Electro-thermal Codesign in Liquid Cooled 3d Ics: Pushing the Power- Performance Limits

نویسندگان

  • Bing Shi
  • Ankur Srivastava
چکیده

Title of dissertation: ELECTRO-THERMAL CODESIGN IN LIQUID COOLED 3D ICS: PUSHING THE POWERPERFORMANCE LIMITS Bing Shi, Doctor of Philosophy, 2013 Dissertation directed by: Professor Ankur Srivastava Department of Electrical and Computer Engineering The performance improvement of today’s computer systems is usually accompanied by increased chip power consumption and system temperature. Modern CPUs dissipate an average of 70 − 100W power while spatial and temporal power variations result in hotspots with even higher power density (up to 300W/cm). The coming years will continue to witness a significant increase in CPU power dissipation due to advanced multi-core architectures and 3D integration technologies. Nowadays the problems of increased chip power density, leakage power and system temperatures have become major obstacles for further improvement in chip performance. The conventional air cooling based heat sink has been proved to be insufficient for three dimensional integrated circuits (3D-ICs). Hence better cooling solutions are necessary. Micro-fluidic cooling, which integrates micro-channel heat sinks into silicon substrates of the chip and uses liquid flow to remove heat inside the chip, is an effective active cooling scheme for 3D-ICs. While the micro-fluidic cooling provides excellent cooling to 3D-ICs, the associated overhead (cooling power consumed by the pump to inject the coolant through micro-channels) is significant. Moreover, the 3D-IC structure also imposes constraints on micro-channel locations (basically resource conflict with through-silicon-vias TSVs or other structures). In this work, we investigate optimized micro-channel configurations that address the aforementioned considerations. We develop three micro-channel structures (hotspot optimized cooling configuration, bended micro-channel and hybrid cooling network) that can provide sufficient cooling to 3D-IC with minimum cooling power overhead, while at the same time, compatible with the existing electrical structure such as TSVs. These configurations can achieve up to 70% cooling power savings compared with the configuration without any optimization. Based on these configurations, we then develop a micro-fluidic cooling based dynamic thermal management approach that maintains the chip temperature through controlling the fluid flow rate (pressure drop) through micro-channels. These cooling configurations are designed after the electrical parts, and therefore, compatible with the current standard IC design flow. Furthermore, the electrical, thermal, cooling and mechanical aspects of 3D-IC are interdependent. Hence the conventional design flow that designs the cooling configuration after electrical aspect is finished will result in inefficiencies. In order to overcome this problem, we then investigate electrical-thermal co-design methodology for 3D-ICs. Two co-design problems are explored: TSV assignment and micro-channel placement co-design, and gate sizing and fluidic cooling co-design. The experimental results show that the co-design enables a fundamental powerperformance improvement over the conventional design flow which separates the electrical and cooling design. For example, the gate sizing and fluidic cooling codesign achieves 12% power savings under the same circuit timing constraint and 16% circuit speedup under the same power budget.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluidic Cooling and Gate Size Co-optimization in 3D-ICs: Pushing the Power-Performance Limits

The performance improvement of modern computer systems is usually accompanied by increased computational power and thermal hotspots, which in turn limit the further improvement of system performance. In 3D-ICs, this thermal problem is significantly exacerbated, necessitating the need for active cooling approaches such as micro-fluidic cooling. This paper investigates a co-optimization approach ...

متن کامل

Co-design of 3d Cpus with Micro-fluidic Cooling

Title of dissertation: ARCHITECTURAL-PHYSICAL CO-DESIGN OF 3D CPUS WITH MICRO-FLUIDIC COOLING Caleb Serafy, Doctor of Philosophy, 2016 Dissertation directed by: Professor Ankur Srivastava Department of Electrical Engineering The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons f...

متن کامل

Architecture Simulation Framework for 3D IC

The practical limitation of implementing 3-dimensional integrated circuits is the increased thermal stress. The integration of liquid cooling with 3D IC can solve the thermal problems, allowing up to 1,000W/cm of power density [1, 2]. Thus, the significant performance improvement can be made through 3D ICs and liquid cooling integration. However, increased transistor and power density will addr...

متن کامل

Thermal Control in 3d Liquid Cooled Processors via Hotspot Separation and Thermoelectric Cooling

Microchannel liquid cooling is a promising technique to handling the high temperature problem of threedimensional (3D) processors. There have been a few works which made initial attempts to optimize liquid cooling by utilizing non-uniformly distributed channels, variable flow rate, wider channels, and Dynamic Voltage and Frequency Scaling (DVFS) combined with thread migration mechanisms. Althou...

متن کامل

Cooling Performance Analysis of Water-Cooled Heat Sinks with Circular and Rectangular Minichannels Using Finite Volume Method

In this paper, the cooling performance of water-cooled heat sinks for heat dissipation from electronic components is investigated numerically. Computational Fluid Dynamics (CFD) simulations are carried out to study the rectangular and circular cross-sectional shaped heat sinks. The sectional geometry of channels affects the flow and heat transfer characteristics of minichannel heat sinks. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013